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ABSTRACT
Modern distributed stream processing systems (DSPS), such
as Storm, typically provide a flexible programming model,
where computation is specified as complicated UDFs and
data is opaque to the system. While such a programming
framework provides very high flexibility to the developers, it
does not provide much semantic information to the system
and hence it is hard to perform optimizations that has al-
ready been proved very effective in conventional stream sys-
tems. Examples include sharing computation among over-
lapping windows, co-partitioning operators to save commu-
nication overhead and efficient state migration during load
balancing. In lieu of these challenges, we propose a new
framework, which is designed to expose sufficient semantic
information of the applications to enable the aforementioned
effective optimizations, while on the other hand, maintain-
ing the flexibility of Storm’s original programming frame-
work. Furthermore, we present new optimization algorithms
to minimize the communication cost and state migration
overhead for dynamic load balancing. We implement our
framework on top of Storm and run an extensive experi-
mental study to verify its effectiveness.
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•Information systems→MapReduce-based systems;
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1. INTRODUCTION
There is an emerging interest in building next-generation

large-scale distributed stream processing systems (DSPS),
such as Storm [30], MillWheel [1] and Spark Streaming [32],
which make use of large-scale computing clusters to perform
continuous computations over fast streaming data. To sup-
port complex application logic that is not easy to express in a
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declarative language, such as matrix multiplication and var-
ious data analytics algorithms, these systems support com-
plex user-defined functions (UDF) implemented using im-
perative programming languages and a simple data model,
often opaque to the system.

We observe that, assuming the semantics of UDFs and
data are opaque to the system, makes it hard to employ some
important optimizations that have been proved to be effec-
tive in conventional SQL-like data stream systems. First
of all, window-based computation, which continuously exe-
cutes functions over sliding windows, is a fundamental type
of computation for data stream applications. In a DSPS,
a job contains a complex topology of operators and each
operator would be parallelized onto a large number of asyn-
chronous instances, which renders the maintenance of the
advancement of the sliding windows challenging. Further-
more, a job in a DSPS may perform similar computation on
overlapping windows that share a lot of common data. Shar-
ing the computation among overlapping windows is known
to be an effective optimization technique in conventional
data stream systems [18, 5], which unfortunately is not em-
ployed by the state-of-art DSPSs.

Another effective optimization for DSPS is to collocate
the parallelized instances that communicate extensively be-
tween each other [17, 12], which would not only reduce the
bandwidth consumption, but also save the CPU overhead
for data serialization and deserialization. The effect of such
an optimization depends on how the operators are paral-
lelized. For example, if the input of two adjacent operators
can be partitioned in a way such that each instance of the
upstream operator only communicates with one instance of
the neighboring operator, and vice versa, then we can com-
pletely eliminate the communication between these two op-
erators by collocating every pair of communicating instances
onto the same node. However, in existing DSPSs, inputs of
an operator are partitioned based on the key of its input,
which is assumed to be an opaque blob. Therefore, the sys-
tem does not have the opportunity to adjust the partitioning
key to exploit this kind of optimization.

Last but not the least, dynamic load balancing is im-
portant to maintain low processing latency under signifi-
cant runtime load variation in a long-standing stream job.
Load balancing requires moving tasks from one node to an-
other. For a stateful operator, e.g. a window-based opera-
tor, moving its tasks would incur the movement of computa-
tion states. To reduce the cost of state migration, more se-
mantic information of window-based computation is needed.



In this paper, we intend to solve these issues by building a
programming framework on top of Storm, which still keeps
most of the flexibility of the original Storm framework, but
at the same time achieve high efficiency in window-based
computation and low overhead in both data communication
and dynamic load balancing. In summary, the contributions
of this paper include the following.

• We propose a framework, which natively supports win-
dow management. Our framework not only simplifies
the development of complicated window-based compu-
tations, but also enables transparent sharing of com-
putations on overlapping windows.

• By extending the opaque partitioning “key” to a set
of named attributes, our framework can obtain more
information about how the input of operators are par-
titioned. Therefore, it can check if two or more oper-
ators can be parallelized consistently.

• We propose an optimization algorithm to minimize the
communication cost by grouping consistent operators
into components. By parallelizing the operators in
each component using the same set of attributes, we
can eliminate the communication across these opera-
tors.

• We also propose efficient task migration techniques
which utilize the additional semantic information avail-
able in our framework to minimize the overhead of load
balancing.

• We implement our framework on top of Apache Storm
and perform extensive experiments on Amazon EC2,
which verify the effectiveness of our techniques.

2. MOTIVATING EXAMPLE
We now provide a motivating example to investigate what

desireable properties a general DSPS framework should pro-
vide, and give some intuition into how our framework does
so.

Description. The job shown in figure 1 consists of 5 op-
erators, which is used to make various computations for a
peer-to-peer lending company. Within this job, op1 calcu-
lates the interest rate per incoming data tuple; op2 calculates
the interest rate vs. the annual income per area and op3 cal-
culates the approval rate of loans per area; op4 calculates the
globally average interest rate and op5 calculates the global
approval rate.

Assume the schema of the input data is: 〈user, area, date,
approval, amount, return, lendingTime, income〉. Operator
op1 is partitioned on all these attributes, while op2 and op3
are partitioned only on the area attribute. op4 and op5 can-
not be parallelized, as they calculate global values.

Figure 1: Motivational Job

Issue 1. Executing the job, potentially requires output
from op1 to be sent over the network to both op2 and op3, as

each instance of op2 and op3 takes the outputs from a subset
of op1 instances as their inputs.

Optimization 1. Transparently detect and group com-
patible operators to minimize the overhead of inter-operator
communication. The solution for the example job is seen in
figure 2. Fused operators are called components, in this
case, operators op1, op2 and op3 are grouped as component
C1 and partitioned on the 〈area〉 attribute.

Figure 2: Motivational Job w. Components

Issue 2. Operators op2, op3, op4, op5 need to maintain
windows with overlapping computation. Assume they must
produce an output each 10 minutes, 30 minutes, 1 hour, 6
hours and 24 hours. This requires the end-user to implement
a window management mechanism to maintain the states for
multiple windows concurrently.

Optimization 2. Our framework can compute the win-
dows, by either executing each input once for each overlap-
ping window or once per tuple to form partial results, which
are then merged by the consolidate operator. The decision
can be made a runtime time, based on a cost-model [23], as
long as the job is prepared to use the consolidate operator.
We now describe how this is done for the motivational job.

As presented in figure 3, the operators op2 and op3 are
each split into two operators, (1) a compute operator, which
calculates partial results for 10-minute intervals and (2) a
consolidate operator, which merges the results of 10-minute
intervals, in order to produce outputs for the user-specified
window intervals. This means the compute operator is exe-
cuted once for each incoming tuple and the consolidate op-
erator is executed once for each required output.

Figure 3: Motivational Job w. Components & CS

Issue 3. Rebalancing instances among nodes, requires
migrating instances from overloaded nodes to those which
are capable of taking over the computation. If the situa-
tion happens frequently, the migration operations can incur
extensive processing latency.

Optimization 3. We noticed that, compared to compute
operators, the workloads of consolidate operators are much
more stable, as they only execute results from compute oper-
ators, which usually have a fixed rate. This property means
that the probability of rebalancing a consolidate operator is
much less than that of compute operators. Therefore, our
framework supports merging the consolidate operators into
the downstream neighboring components at runtime, as pre-
sented in figure 4. After this merge, there are only compute
operators within component C1. By updating the input par-



titioner of C1, one can migrate an instance of C1 from one
node to another. The migration of a compute instance can
be done even without moving its state. For instance, for a
10-minute window interval, suppose the results of the first
5-minute interval are calculated on node A and the results
of the second 5-minute interval are calculated on node B
after migration, the downstream consolidate operator can
merge the partial results from node A and B to generate
the results of the complete 10-minute window instance. No-
tice also that the extra overhead of merging partial results
is only temporary, because the results from the “old” nodes
(node A in this example) will eventually no longer be needed,
once they are not included within any future user-specified
window intervals.

Figure 4: Motivational Job (split)

Benefits. As is clear from the above discussion, there
are large benefits when working at a higher level abstraction
with clearer semantical meaning, which allows the following
advantages of our framework:

1. Transparent creation of components (fusion).

2. Transparent window management.

3. Transparent sharing of computation between overlap-
ping windows (used only when most efficient).

4. Efficient state migration.

3. RELATED WORK

3.1 Programming Models
The MapReduce framework [10] is designed for batch pro-

cessing, where data is known beforehand and significant pro-
cessing latencies are acceptable. The programming model of
the MapReduce framework can be modified [7], such that the
framework becomes suitable for low-latency processing. In
short, the reducer can be modified to do eager processing
of inputs and produce preliminary output. This has lead
to several similar low-latency programming models, such
as those employed by Apache Storm [30], Apache S4 [25],
Google MillWheel [1] and more [20, 9]. Our approach is an
extension of such typical low-latency programming models,
which employs an additional operatortype to allow a large
set of optimizations.

3.2 Runtime Load Balance
Adaptation. One of the most common ways to repar-

tition data at runtime, is to make global decisions based
on statistics collected at runtime, and then choose the most
appropriate state migration techniques to effectuate the de-
cisions [14, 27, 13, 19]. ESC [27] is such a system, which
supports scaling and load balancing by using an Autonomic
Manager, which has access to information about the work-
load of each node and the queue lengths of the worker pro-
cesses, to make global decisions.

In this work, we use Flux [28] to make decisions on which
workloads to migrate between nodes. Flux works periodi-
cally as follows. It sorts nodes in descending order of their
workloads. Then it moves the biggest suitable data parti-
tion at the first node to the last one in the sorted list, such
that load variance is decreased. If necessary, it also moves
the biggest suitable data partition at the second node to the
second last one in the list, and so on.

There are many different variations of load balancing, such
as those proposed by [34, 33, 22].

State Migration. The simplest state migration tech-
nique is called direct state migration. It works by first paus-
ing the processing of the workload to migrate, then seri-
alizing the state and sending it over the network, before
unpausing the processing again. The latency therefore pri-
marily depends on the statesize [21].

In some circumstances it is possible to improve the state
migration efficiency, by exploiting certain features of a DSPS
[29]. A good example of this is checkpoint-assisted state
migration [21, 8] in DSPSs which are executed with passive
fault-tolerance [16, 6]. The idea is that a checkpoint already
contains state, and if migrating a workload to a node with a
recent checkpoint, it is possible to save the cost of serializing
the state (i.e. direct state migration) and only incur the cost
of replaying buffered tuples from the passive fault-tolerance.

The authors in [2] discuss how to avoid the need for costly
state migration, by adding an operator to perform aggrega-
tion of the partial results of the scaled operators. A recent
technique called “The Power of Two Choices” (PoTC) [4],
extends this idea, by defining two hash functions h1(x) and
h2(x), such that each key x can be sent to one of two alterna-
tive downstream operator instances. Each operator instance
balances the amount of work sent downstream, such that
all operator instances receives an even workload. Since the
state is split over two operator instances per key, the partial
states must be merged before the final computation can be
applied. The same authors [24] then studied scenarios where
two choices are not enough to obtain sufficient load balance.
They identify hot operator instances, i.e. those which are
more heavily loaded than the rest and allow these to be ex-
ecuted on more than two nodes. They show this allows the
system to obtain a very good load balance. The overhead
of their techniques can become large, because hot keys can
have more duplicated state, which leads to more required
merges.

Our framework extends on the idea of maintaining par-
tial states. With the help of the consolidate operator, the
framework avoids the continuous overhead as e.g. the PoTC
approach suffers from.

Collocation. Operator instances which are exhibiting
extensive direct communication, can preferably be collocated
on the same nodes, in order to minimize the inter-node com-
munication. The following papers all tries to solve the prob-
lem of minimizing the inter-node communication, while en-
suring each node is loaded less than some user-defined value.

The authors in [3] defines the traffic-based scheduler, which
is a heuristic approach relying on runtime statistics. The so-
lution is recalculated and effectuated at runtime, if the load
of any node becomes too large, or it is possible to reduce
the inter-node communication by some user-defined percent-
age. The authors does not consider the overhead of their
approach.



The authors in [31] defines a traffic-aware scheduler. Their
approach can incur an extremely high overhead if stateful
computation is employed, since the overhead of the approach
is then unbounded. Fischer et al [11] defines a solution which
models the objective as a graph partitioning problem. They
consider only cpu load. Peng et al [26] claims the problem
is infeasible to solve optimally, and then process to define
a heuristic solution. Their approach considers both cpu,
memory and bandwidth.

In this work, we employ a heuristic approach to minimize
inter-node communication at job-submission time, with the
help of operator fusing. This allows the framework to sup-
port standard techniques for load balancing, which would
otherwise nullify the benefits of collocation over time.

3.3 Sharing Computation
In DSPSs with native support for windows, it is possi-

ble to share computation between overlapping windows, as
discussed in [18]. It is possible to share computation for
different classes of aggregation functions, different window
typic and different input models [5]. A short paper [23] pro-
vides a cost-model for determining if sharing computation
between overlapping windows is beneficial.

4. FRAMEWORK

4.1 Data Model
Data is modeled as a number of continuous streams of

tuples in the form of 〈key, value, ts1, ts2〉.

• The key is an n-tuple, containing a set of partitioning
attributes. It is the key that decides how the tuple is
routed.

• The value is an n-tuple, containing user-defined values.

• The ts1 and ts2 are timestamps associated with the tu-
ple, which is used to indicate what timespan the tuple
belongs to. This is especially useful when considering
time-based windows, as a tuple might represent a value
calculated over a specific window instance.

4.2 Programming Model
Enorm supports hopping, tumbling and overlapping time-

based windows, defined by a starting time, a length and
a frequency (of window instances). It is up to the end-
user to decide how to handle data that spans multiple win-
dows, which is also defined as part of a window specification.
Enorm uses a slack s to determine when all data for a win-
dow [tsi, tsj ] is received at a given operator instance, by
ensuring a punctuation with timestamp t ≥ tsj +s has been
received from each upstream operator instance. Punctua-
tions are periodically sent from the input operators (spouts
in Apache Storm terminology) and emitted downstream on
the same communication channels as the data. Enorm sup-
ports sharing of computation between overlapping windows,
by transparently maintaining state in partials of windows,
and later merging the partial states into the user-defined
complete windows. Enorm uses a cost-model to detect if it
is cheaper to do this merge, compared to calculating dupli-
cate state as typically done.

The MapReduce framework [10] specifies two main opera-
tors, map and reduce. The map operator supports stateless
low-latency processing and can therefore be used directly in

our framework. The reduce operator is split into two op-
erators, called compute and consolidate. Our framework
consists of the operators:

map(k1, v1, t1, t2)→ list(k2, v2, t3, t4), takes one tuple and
eagerly outputs a list of new tuples, by executing the user-
defined logic in the function. It does not support state.

compute(k2, v2, t3, t4) → (k2, v3, t5, t6), takes one tuple
and eagerly process it to build the state for the correspond-
ing window (or a partial of the window). The compute func-
tion makes memory storage (state) available to the end-user,
by exposing a map from a key to a user-defined object. The
user can store any state within this structure. After all input
for a given window (or partial of a window) has been pro-
cessed, the state is sent to the downstream operators, such
that all values for a given key, is sent to the same instance
of a given downstream operator.

consolidate(k2, list(v3), t5, t6) → list(k3, v4, t5, t6), takes
a list of partial windows (with partial states) and merges
them into complete windows as per the window specifica-
tion. The user must specify the logic needed to merge par-
tial windows. The operator will only output tuples when
results for a completed window is created.

Figure 5: Operator Configurations

The functionality of the operators, depends on their con-
figuration. Figure 5 shows the possible configurations.

Figure 5.1 shows a compute operator followed by consoli-
date. The consolidate operator maintains one or more time-
based windows, which are calculated by either (1) merg-
ing partial results from upstream compute or (2) computing
state for each overlapping window. The actual technique
is determined at runtime. The compute operator processes
incoming tuples in an eager fashion. In case the cost-model
defines that it is most efficient to use automatic sharing
of computation between overlapping windows, the compute
function will only output partial results, which are then
merged by the consolidate function. Otherwise, the com-
pute function will compute distinct output for each window,
by executing the user-logic for each window and sending tu-
ples downstream when a window instance is completed. In
this case, the consolidate operator just checks for any par-
tial data to merge, which are the results of state migration,
before sending along. Details on state migration will be ex-
plained later on.

Figure 5.2 shows a compute operator which is sending
data to a compute (or a map). In this case, the upstream
compute operator will not produce partial results, but in-
stead do regular eager processing of tuples. This configu-
ration does not support automatic sharing of computation
between overlapping windows, nor does it support migrating
instances of the compute operator without performing state
migration.

Figure 5.3 shows a consolidate operator sending its out-
put to another consolidate operator. The upstream operator
produces outputs for complete window instances, which are
simply considered as partial results by the downstream con-



solidate operator, whose logic is similar to the one in figure
5.1.

Figure 5.4 shows the simplest case, as tuples are sent
along without any special logic. That is, the upstream oper-
ator will output tuples as soon as they are available and the
downstream operator will eagerly process them. The differ-
ence between compute and map in this configuration is that
compute maintains a key-value store, while map does not.

4.3 Operator Model
A DSPS is executing a set of long-standing queries, which

can be represented as a DAG 〈O,E〉, where each vertex is
an operator Oi and the direction of the edges represent the
direction of data flow. Each operator Oi is characterized by
a tuple 〈IS(Oi), OS(Oi), PA(Oi), List(S(Oi))〉.

ISi and OSi are the input and output data schema(s) and
PA(Oi), called partition attributes, is a subset of attributes
in IS(Oi), which will be used to parallelize Oi. Each unique
combination of the values of attributes in PA(Oi) defines a
unique partition of Oi.

In a parallelized query plan, an operator Oi could be par-
titioned onto a number of computing nodes according to
PA(Oi) and the maximum number of partitions that we
can generate using PA(Oi) is called the partition cardinal-
ity of PA(Oi), which is denoted as PAc(Oi). In this paper,
we assume every tuple can be uniquely identified with all of
its attribute values. So if PA(Oi) = IS(Oi), then we denote
PAc(Oi) = ∞, which means that the number of partitions
of Oi is only limited by the cardinality of the input which
is unbounded in a data stream system. Another boundary
case is that PA(Oi) = ∅ and in this case, PAc(Oi) = 1.

Example 1a. Suppose we have an operator O1 which
is counting words and has input schema IS(O1) = 〈word〉
and output schema OS(O1) = 〈word,wordcount〉. Say we
have another operator O2 which is counting letters of words,
with input schema IS(O2) = 〈word〉 and output schema
OS(O2) = 〈letter, lettercount〉.

If O1 and O2 are partitioned on the attribute word, we get
PA(O1) = PA(O2) = 〈word〉. The maximal partitions that
can be created for both operators is equal to the number of
distinct words in the input dataset.

Example 2a. Lets return to the motivational example
depicted in figure 1. Operator 1 has PA(O1) = 〈all〉, with
PAc(O1) = ∞. Operator 2 has PA(O2) = 〈area〉, with
PAc(O2) = |area|. Operator 4 has PA(O4) = ∅ with
PAc(O4) = 1. Operator 3 is the same as operator 2 and
operator 5 is the same as operator 4.

A stateless operator is defined as an operator which
does not maintain any computation state. The consolidate
operator is stateless, even though it buffers data, as any lost
state (from instance migration without state), will simply
be resent from the upstream operators.

A stateful operator maintains states while executing
the incoming tuples. The compute is the only stateful oper-
ator in the framework.

A flexible operator is oblivious to how incoming data
is partitioned, which means the partitioner can be changed
without doing state migration.

A rigid operator requires that states must be redis-
tributed when modifying the partitioner, to ensure tuples
are executed based on correct states. See table 1 for an
overview of how the map, compute and consolidate opera-
tors are categorized.

Operator Properties
Map Stateless and Flexible
Compute Stateful and Flexible
Consolidate Stateless and Rigid

Table 1: Overview of operators

4.4 Parallel Query Processing
Fusion is the act of combining operators into units called

components. We define PA(Ci) = ∩(Oj∈C)PA(Oj) 6= ∅ and
a component Ci can at most be parallelized onto PAc(Ci)
nodes. A component is stateless, if it contains only stateless
operators and a component is flexible, if it contains only
flexible operators.

Example 1b. Continuing with the previous example 1a
(section 4.3), the operators O1 and O2, can be combined as
component C1, with PA(C1) = 〈word〉, and the maximal
number of partitions which can be generated for C1 is in
this case PAc(C1) = PAc(O1) = PAc(O2).

Example 2b. For the motivational job given in figure 2,
component 1 has PA(C1) = 〈area〉, with PAc(C1) = |area|
and component 3 and 4 has PA(C3) = PA(C4) = ∅ with
PAc(C3) = PAc(C4) = 1. Compared to the original job, the
transformed one has less potential for scaling, but benefits
from faster execution.

4.4.1 Fusion
The process of constructing components is called Fusion,

which can either be specified by users manually or be done
by automatic recognition. We now describe how to automat-
ically fuse operators. The objective of fusion is to minimize
the inter-component communication, such that:

1. Each operator Oj belongs to exactly one component

2. ∀Ci : ∩Oj∈CiPA(Oj) 6= ∅

Load balancing is not considered at this point, because
the load of each component can be tweaked by adjusting the
number of instances which are initialized for a component.
A node can execute many instances of a given component,
each processing a subset of the inputs.

Algorithm 1 presents a greedy algorithm, which can fuse
operators. The algorithm works greedily by merging the op-
erators with largest score, as long as they are partitioned in
a compatible way. The score is the rate of data tuples trans-
ferred between the operators to fuse. Given the input from
figure 1, algorithm 1 returns the result as shown in figure
2. Algorithm 1 requires information about the rate of data
transmission between all operators, which usually requires
a trial execution of the job. In some cases, this might be
inconvenient (or the input rate might be very unstable), for
which reason we here define an alternative scoring mecha-
nism whose objective is to minimize the number of compo-
nents.

Alternative Scoring. Minimizing the number of com-
ponents indirectly minimizes the inter-component commu-
nication. The alternative score is based on the commonness
of the partition attributes between operators which are not
fused. The score of fusing operators opi and opj is calculated
by taking the intersection of the partitioning attributes and
summing the values. The reasoning behind fusing operators
which have most partitioning attributes in common, is to



Algorithm 1: Automatic Fusion

Input: operators O, partition attributes per operator,
output rate between any pair of operators

1 opFused← newMap()
2 for each o ∈ O do
3 opFused(o)← {o}
4 while true do
5 maxScore ← 0
6 for each i ∈ O do
7 srcComponent ← opFused(i)
8 srcPA ← getPA(srcComponent)
9 for each j ∈ i.downstreamOP do

10 if srcComponent contains j then
11 continue
12 dstComponent ← opFused(j)
13 dstPA ← getPA(dstComponent)
14 if size(intersect(srcPA, dstPA)) = 0 then
15 continue
16 score ← getOutputRate(i, j)
17 if score > maxScore then
18 maxScore ← score
19 src ← i
20 dst ← j

21 if maxScore > 0 then
22 fuse src and dst, such that src and dst points to

the same component in opFused
23 else
24 break

25 return opFused

maximize the probability that more fusion operations can
be performed afterwards.

4.4.2 Key Expansion
If input data to flexible operators are randomly parti-

tioned, significant key expansion may happen, that is, each
key in the key space is maintained on each node of the flex-
ible operator. This leads to (1) worse processing latency,
since building new state is more time-consuming than up-
dating existing state and (2) excessive memory utilization
and (3) increased overhead of consolidating the partial re-
sults, whose size increase with key expansion.

There are multiple ways to handle this problem. One
recent approach is called“Power of Two Choices”(PoTC) [4],
which ensures each input can be processed by maximally two
different nodes. This approach will result in a reasonably
load-balanced operator, but will maintain up to two times
of the number of keys and associated values, and also incur
a continuous overhead for merging partial results.

Our framework takes another approach to avoid the con-
tinuous overhead of key expansion. According to the data
model, each tuple is associated with a key. These input keys
can be partitioned into a number of non-overlapping subsets,
each called a component instance or a key group. Each key
group is independent of one another and each can maintain
a separate processing state if applicable. A partitioner can
now be defined by a hash function, which maps an input tu-
ple to a key group. Using this logic, key expansion no longer
exists as each key is sent to only one node. Problems with
overload, underload and skewness can be handled by chang-
ing the location of a subset of key groups, such that they

are to be executed on a new set of nodes. This can be done
instantly, without moving any state, and will only result in
a temporary key expansion, i.e. state is only maintained on
two nodes while the state on the “old” node is still valid.

Choosing which key groups to migrate is the job of an
adaptation algorithm. In this work, we employ Flux[28],
though our framework can support any kind of adaptation
algorithm.

4.5 Adaptation Model
We now describe how adaptation operations are modelled.
Adaptation Categories. Adaptation strategies can be

grouped into three categories:

1. Instant migration. With this strategy, the migration
does not involve movement of the state of the running
instance and the new operator instance can be fired up
at the destination node (almost) instantly. This is ap-
plicable when the operator to be migrated is stateless
or flexible.

2. Disruptive migration. This strategy takes a pause-and-
migrate approach, where we first pause the processing
of the relevant operator instances and move the their
states to the destination nodes. The input data will be
redirected from the old instance to the new instance
of the operator. After the migration, the old instance
will be scraped while the new one will resume the pro-
cessing based on the migrated state. Note that, in
this strategy, both the old and new instances of the
operators cannot execute any input data during the
migration.

3. Smooth migration. This strategy can be applied to per-
form migration of window-based operators that con-
ducts computations over a sliding window. In general,
this strategy keeps the old instance of the operator
running while it initiates the new instance at the des-
tination. The old instance will keep generating the
results for the current window instance while the new
instance will generate results for the next window in-
stance, whose states are not overlapped. Notice that
for overlapping windows, this will result in tuple du-
plication while the adaptation operation is being effec-
tuated.

Basic Adaptation Operations. The adaptation oper-
ations discussed in this paper are defined as follows:

1. Migrate(Oi, Cj , Ck):

(a) migrate Oi from Cj to Ck so that C′
j = Cj \ {Oi}

and C′
k = Ck ∪ {Oi}.

(b) PA(C′
k)← PA(Ck) ∩ PA(Oi)

(c) PA(C′
j)← ∩(Ol∈(Cj\{Oi}))PA(Ol)

In practice, this adaptation operation is useful under
the following two circumstances: (1) PAc(Cj) is too
small and Cj cannot be scaled sufficiently out; (2)
PA(C′

j) = IS(Cj), which means the new component
C′

j can be partitioned arbitrarily and hence it can be
re-scaled with minimum cost. This operation is what
is applied in the motivational example, when the job
is transferred from figure 3 to figure 4.



2. RePartition(Ci, Nj , Nk) Given the current partition-
ing scheme of Ci on a set of nodes Nj , this operation
re-allocates the partitions of Ci to a new set of com-
puting nodes Nk. If Nk is equivalent to Nj , then this
operation can be used to rebalance the load distribu-
tion among Nj . Otherwise if Nk is a superset (or sub-
set) of Nj , then the operation is to increase (or reduce)
the resource allocated to the processing of Ci.

The model is flexible and general enough to allow users to
specify both complicated and simple adaptation techniques
with ease. Consider for instance the direct state migration,
which is of type Disruptive Migration and can be expressed
with the RePartition operation.

Composite Operations. The basic operations can be
used to form composite operations which are carried out
on the components. For example, the operation of allocat-
ing one more computing node nl to process component Ci

could be composed by the following sequence of basic adap-
tation operations: Migrate(Ok, Ci, Cj) → Repartition(Ci,
Ni, N

′
i), where N ′

i = Ni ∪ {nl}.

5. ADAPTATION
In this section, we describe how to efficiently migrate the

instances of components in our framework.
Scaling a Flexible Stateless Component. The com-

ponent can only consist of map operators. Since the compo-
nent is flexible and stateless, it is straight-forward to adapt,
using the strategy of Instant Migration. A shuffle parti-
tioner can be used to reallocate the key group, which also
means the component can be balanced without performing
any state migration operation.

Scaling a Flexible Stateful Component. The compo-
nent can consist of map and compute operators, and can be
migrated using Instant Migration, Disruptive Migration and
even Smooth Migration if the component conducts windowed
computation. From previous works [21], it is known the la-
tency of disruptive migration depends heavily on the size
of the migrated state, and the completion time of smooth
migration depends heavily on the window length.

We now discuss the implications of using Instant Migra-
tion, which is applicable when the downstream component
first applies a consolidate operator to merge partial results.
Consider that by changing the location of key groups, with-
out migrating any state, partial state for a key will exist
on multiple nodes. This means the migration increases the
number of keys to consolidate on the downstream operators
(key explosion, see section 4.4.2). The implication is that
more data must be serialized, sent over the network, de-
serialized and consolidated. This side-effect lasts until the
state on the node which initially contained the migrated key
group becomes useless. The benefit of this approach is that
it does not incur any latency of state migration and can be
applied instantly.

Scaling a Rigid Stateless Component. The compo-
nent can consist of map and consolidate operators. Remem-
ber that consolidate operators do not need to maintain state,
but instead require that any missing state is resent from
their upstream components. It is therefore possible to mi-
grate this component without state, which is most efficiently
handled using Instant Migration.

Scaling a Rigid Stateful Component. The compo-
nent can consist of map, compute and consolidate operators.

In case the component is windowed, migrating its instances
can only be done using Disruptive Migration or Smooth Mi-
gration. Notice that this kind of component is the only one
which cannot directly support Instant Migration.

Since instant migration is the most efficient migration
strategy, we define a split operation which extracts certain
operators from the rigid stateful component, thereby allow-
ing them to be efficiently adapted. We also define the com-
bine operation, which functions in the opposite way as the
split.

5.1 Split & Combine
Split transforms a rigid stateful component to a flexible

stateful component, by migrating the consolidate operators
to the immediate downstream component. Figure 6 shows
the scenario. In this work, we assume the immediate down-
stream component is either flexible or partitioned in a “com-
patible” fashion, i.e. PA(Cx) ∩ PA(Cx+1) 6= ∅. The split
operation can be handled with Instant Migration.

Figure 6: Split & Combine

Combine is the opposite operation of split, and can be ap-
plied using Disruptive Migration or Smooth Migration de-
pending on the job. Combine is the only adaptation which
cannot be done instantly. This is acceptable, as combine is
needed only to improve the long-term performance, not to
handle changes in load distributions fast.

One may have noticed that, except for the Combine op-
eration, all the other adaptation operations considered so
far can be handled using Instant Migration, which means
adaptation operations in our framework are very efficient.

5.1.1 Cost-Model
In this section we give a cost-model to determine the cost

in terms of cpu and latency, when executing either a Com-
bine or Split operation.

Definitions. Let us denote the interval of the longest
window for an operator opi as p, the set of tuples to process
within p as Tp and the average cost to execute the user-
logic for a tuple as E. Let W be the number of overlapping
windows and PWp be the number of partial windows needed
within p. The average number of migrated key groups (for
load-balance) within p is denoted as MKp and the cost of
migrating a key group containing x copies of state is denoted
as Kx. Lastly, let L be the average latency of migrating a
key group with state.

Split - CPU Cost A split component executes each in-
coming tuple once (when forming partial windows), which
gives a cost Tp ·E. A split component also incurs the cost of
sending the results of partial windows from an upstream
compute operator to a downstream consolidate operator,
this part of cost is calculated as PWp · K1 · #keygroups.
As discussed previously, load migration leads to temporary
extra state, which must also be consolidated, whose cost is
MKp ·K1. In total, the CPU cost of split is Tp ·E + PWp ·
K1 ·#keygroups + MKp ·K1.

Split - Latency When the results of a partial window
is to be serialized and sent to a downstream component, a



Figure 7: Efficient Consolidation Figure 8: Naive Consolidation

separate thread can be used such that it does not impact
the processing of newly arriving input data. This is because
the results to be sent will not be changed anymore. The
latency is therefore negligible, when assuming the load of
the involved nodes is at a reasonable level.

Combine - CPU Cost The combined component must
execute each incoming tuple multiple times, to build state
for each overlapping window, which costs Tp ·W ·E. When
migrating a combined component it will contain both the
newest state and also partial windows for the consolidate.
The cost is MKp · Kpwp = MKp · K1 · PWp. In total Tp ·
W · E + MKp ·K1 · PWp.

Combine - Latency The latency of migrations for load-
balance is: MKp · L.

5.1.2 Deciding when to split or combine
We make decisions of split/combine components with the

objective to minimize the CPU cost per component, while
bounding the maximum latency to a user-defined threshold.

The combine operation can not be applied using the In-
stant Migration, which therefore can be quite costly. In
addition, the properties that influence the costs and gains
of conducting split/combine, such as the average number
of state migrations and the average size of states, are ex-
pected to be changed slowly over time. We thus decide to
periodically evaluate and apply the split/combine operations
among components to control the overhead.

After every period p, we evaluate each component with
the aforementioned cost model and apply split or combine
if necessary. We always choose the most beneficial action,
based on the objective described above.

6. IMPLEMENTATION
We have implemented our framework on top of Apache

Storm.

6.1 Efficient Consolidation
Each consolidate operator can support multiple windows,

which are calculated by iterating over all relevant partial re-
sults as defined in section 4. In case multiple windows are
“compatible”, meaning one complete window can be consid-
ered a partial result to another window, then these larger
partial results can be used to form the new window. See fig-
ure 7 for an example, where one consolidate operator must
form complete windows each 5, 10, 15 and 20 minutes, while
receiving partial windows of one minute each.

To produce outputs for one hour, the efficient approach
(figure 7) consolidates 86 partial results, while the naive ap-
proach (figure 8) consolidates 240 partial results.

There are multiple ways to form complete outputs with
the minimum number of consolidates, consider for instance
how the 20 minute window can be formed from 2x10 minutes
or 1x5 and 1x15 minutes. The best choice is the one which
has the smallest number of keys to consolidate, which can
only be determined at runtime.

After a job is submitted, the framework builds a DAG,
which describes all the ways to form complete results for
each consolidate operator. The DAG is duplicated to all
consolidate operators and the structure together with statis-
tical information about the number of keys in each window
(partial and complete) are used to make a decision on how
to form complete windows at runtime.

6.2 Synchronizing Modifications
Our framework uses two kinds of punctuations; timestamp

punctuations and modification punctuations. The modifica-
tion punctuations are used to coordinate dynamic changes
and the timestamp punctuations are used to detect when all
expected data is available for processing a given window.

Our framework periodically outputs timestamp punctu-
ations from the first components in the job, which con-
tains the timestamp of the newest processed data minus a
user-defined grace period, which is the maximum supported
unorderedness of the data. When a component receives a
timestamp punctuation, it stores it in a map, such that the
timestamp for the specific connection is updated. Then the
component calculates the oldest timestamp in the map and
sends it along to all the downstream components. The win-
dow manager maintains a series of window instances per
components, and all window instances which ends before
the oldest timestamp in the aforementioned map can be pro-
cessed, as all data must be available.

To support scaling operations, it is necessary to modify
the logic of multiple components at runtime. Since each
component is processing tuples in an unsynchronized fash-
ion, there can easily be a different set of window instances
on the different components. Each component classifies its
window instances into one of three types: active, process-
ing and completed. An active window, is one which is not
ready for final processing, i.e. it is still missing data. A
processing window, is ready for final processing and is ei-
ther being processed or waiting to be. Lastly, a completed
window has been fully processed. In order to synchronize
updates at runtime, we employ a modification punctuation,
which is guaranteed to modify the exact same set of active
window instances on all components to be modified.

Punctuations are sent on the same queue as the data.
Assume a modification punctuation mp1 is sent before the
timestamp punctuation tp1. The modification punctuation
is never buffered by any operator, so it cannot“travel”slower
than the timestamp punctuation, meaning mp1 must arrive
before tp1 on all components. This means that the same
set of window instances will be active, which is exactly the
set of window instances which is to be modified. The win-
dow instances which are processing and completed remains
unmodified.

7. EXPERIMENTS
This paper combines many diverse techniques into one

complete framework. A simple job is used for the experi-
ments which are not sensitive to the size of the job, while



large jobs with up to 150 operators, are used for the rest of
the experiments.

Simple Job. The job consists of one compute opera-
tor and one consolidate operator, which together conduct
aggregation over multiple windows. The compute operator
maintains partial results over one minute, while the consoli-
date operator combines these into multiple complete results.
The job can be executed as one stateful rigid component
(combined) or as two components (split), where the first is
stateful flexible and the second is stateless rigid.

Large Job. The job is generated randomly in two steps:
(1) assigning partitioning attributes and (2) defining com-
munication between operators. To assign partitioning at-
tributes, an operator simply gets a random subset of 30 par-
tition attributes, whose size is initially half of the partition
attributes. The size of the subset is changed by a random
value for each new operator and the actual partition at-
tributes chosen with the given size, is always completely
random. To define the communication between operators,
we first randomly choose the number of levels in the topol-
ogy, i.e. the longest path in the DAG, as a random value
between three and 0.75· #operators. The operators are then
divided into the needed levels, from the first to the last op-
erator. Each operator sends X tuples to operators in the
immediate downstream level. The communication is calcu-
lated by maintaining X and calculating the tuples to the
first operator as a random between 0 and X, multiplied by
a random between 0 and 1. This gives the amount of tu-
ples, Y, to send to the first operator and X is updated to
be X = X − Y , and the calculation is done similarly for the
next operator in the downstream level.

Fast Job. The job consists of four consecutive compute
operators, each doing aggregation over window with incre-
mental intervals (1 minute, 5 minutes, 10 minutes and 20
minutes). Tuples are eagerly sent along from the first op-
erator to the last operator. This job is used to show the
benefits of co-partitioning in section 7.7.

Setting. All experiments are executed on Amazon EC2.
One instance of type m1.medium is used to execute Apache
Zookeeper [15] and the Nimbus daemon (Apache Storm mas-
ter). Six instances of type m1.medium are used to process
the job. Lastly, one m3.xlarge instance is used to produce
inputs. We employ a more performant instance to produce
inputs, to ensure it can produce tuples as fast as the cluster
can process them.

Input. We use synthetic data, which is initially dis-
tributed uniformly over a given keyspace. Using synthetic
data allows us to change size of state, keyspace and more,
which is useful when experimenting with specific features.

7.1 Consolidation Time
We first investigate how much the consolidation affects

the throughput, when varying the number of tuples to con-
solidate, the number of overlapping windows and whether
the simple job is executed as split or combined.

Setting. The experiment is executed under multiple con-
figurations, the first produces complete results over two win-
dows (each 5 and 10 minutes) and the second produces com-
plete results over six windows (each 5, 10, 15, 20, 25 and 30
minutes). In order to calculate the throughput reliably, we
ensure the input rate is a bit higher than the maximum pro-
cessing capacity of the system, which for this experiment
is 40000 tuples / second. We calculate throughput, based

on how much time it takes to completely process 18 million
tuples.
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Figure 9: Consolidation Overhead

Results. Figure 9 shows the overhead of consolidation
increases slowly and gradually with the number of tuples to
combine (keys per partial result). The result shows that the
overhead of consolidation is low, since doubling the number
of tuples to consolidate only affects the throughput of the
job very little (for the combined component). The overhead
of consolidation affects the split component more, as the
overhead of serialization and deserialization becomes larger.
The number of overlapping windows has little impact on the
throughput. It can be understood by considering that when
using more windows, the consolidation frequency is actually
lowered, which means the overhead is also lowered. This is a
very common pattern. The figure shows the same trend for
executing a split component, where the throughput is simply
lower, due to the overhead of executing a split component
under this configuration. Remember that our framework will
choose the most performant execution technique at runtime,
based on the cost-model defined in section 5.1.1.

7.2 Migration Latency
In this experiment, we examine how the latency (time

processing is paused) resulting from migrating a workload
between nodes, depends on the size of state.

Setting. The simple job is split, and executed with a
suitable input rate to ensure the nodes are averagely loaded
around 70%. The job is executed for four minutes to al-
low the Java Virtual Machine to do optimizations, before
migrating a random key group between two nodes. The ex-
periment is executed multiple times and both instant and
disruptive migration are examined.
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Figure 10: Migration Latency

Result. Figure 10 shows one line for instant migration
and one for disruptive migration. Remember that instant
migration is possible for all adaptations (except combine),
while disruptive migration is the standard in many other
frameworks and systems. Instant migration incurs negligible
processing latency, because serialization only needs to be
applied to the partial results, after the state has been built,
for which reason it can be done in a thread which is separate



to the low-latency execution. For this experiment, disruptive
migration was done with direct migration as described in
section 3. The larger the size of state is, the more efficient
it becomes to perform instant migration.

7.3 Split & Combine
We now investigate the overhead of applying split and

combine, in terms of latency and completion time, which
are calculated on the basis of the previous experiment (sec-
tion 7.2). Split can always be done using instant migration,
which means it finishes very fast with negligible processing
latency. Combine can be done using disruptive migration or
smooth migration. Smooth migration does not incur any la-
tency, but has the maximum completion time of the longest
window processed by the component.
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Figure 11: Split & Combine Overhead

Result. Figure 11 shows that split can always be done
very efficiently. Combine with smooth migration incurs no
latency, but can result in a long completion time. Com-
bine with disruptive migration incurs latency relative to
the statesize to migrate. The most efficient combine action
should be chosen at runtime, using a suitable cost model
[21].

7.4 Scaling a Flexible Stateful Component
In this experiment, we consider the performance overhead

of applying instant migration and disruptive migration, on
a flexible stateful component. The overhead is measured as
the extra time needed to complete the processing.

Setting. In order to get a flexible stateful component, the
simple job is split. The compute produces a partial result per
minute and the consolidate produces a complete result every
five minutes. The initialization phase is 20 minutes, after
which we migrate between 0 and 100% of the key groups
of the compute operator using either instant or disruptive
migration.
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Result. Figure 12 shows the percentual increase in com-
pletion time, from migrating x% state. The overhead is
similar for both approaches. To see why, consider that us-
ing disruptive migration to move one key group incurs the
overhead of serializing and deserializing the key group. If
employing instant migration to migrate one key group in-
stead, we get extra partial data corresponding to exactly

one key group to also serialize and deserialize (at a later
time). The benefit of the split component is that it can ap-
ply instant migration, where the combined component must
apply disruptive migration, i.e. the split component bene-
fits from low state migration latency without incurring any
performance overhead.

7.5 Instant vs. Disruptive Migration
In this experiment we compare instant migration with dis-

ruptive migration, and show that for some inputs, instant
migration is needed to obtain low processing latency. The
simple job is used, since the result of this experiment is in-
dependent on the size of the job.

Setting. The first five minutes is the initialization phase.
During the initialization, no adaptation is done and the in-
put rate is fixed, such that each node is loaded around 70%.
Afterwards, the input rate is changed as follows: A node
is chosen and the input rate for the key groups allocated
to the selected node, are gradually increased over the next
three minutes, until 50% extra load has been added. This
is implemented by skewing the key distribution at runtime.
The node thus becomes overloaded and adaptation is needed
to maintain a reasonable processing latency. After two more
minutes, a new node is selected and the process is repeated.
The job is executed under multiple configurations, (1) dis-
ruptive migration is applied each minute, (2) disruptive mi-
gration is applied each five minutes (3) and lastly instant
migration is applied continuously.

The key space of the input is adjusted, such that each
key group has around 50k keys. This is a very reasonable
value, as it is large enough to introduce latency from the
disruptive migrations, which heavily depend on the size of
state to migrate.
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Result. The result is shown in figure 13. When disrup-
tive migration is done every five minutes, it results in exten-
sive processing latency because the slow migrations cannot
keep up with the change in input and nodes become over-
loaded. This problem can only be handled by increasing the
frequency of performing migrations.

Performing disruptive migration every minute results in
better latency, because the migrations are now done fre-
quently enough that the system is able to handle overloaded
nodes faster. The processing latency in this case primar-
ily comes from the actual state migration operations, which
cannot be avoided.

Instant migration achieves a factor of ten improvement
over the disruptive migration in terms of processing latency.
Obtaining a low processing latency is important for multi-
ple reasons. For instance, while processing fast (high input
rate) input streams, a long pause can lead to either excessive
memory usage or the worse, flushing tuples to disk if run-



ning out of memory. Therefore, incurring as little processing
latency as possible is an important performance objective.

7.6 Fusion
In this experiment, we investigate how good our heuristics

for automatic fusion are. Fusion depends heavily on the
partitioning attributes and the operator configuration, for
which reason we generate random jobs for 50, 100 and 150
operators with 30 partition attributes, as described in the
beginning of this section. Each heuristic is executed on 500
random jobs and average results are presented.

Baseline. We define a baseline, which works by taking
the first operator in the job and trying to merge downstream
operators, by greedily fusing the operator whose intersection
of partition attributes is the largest. This fusion operation
continues until no more operators can be fused. Then it
selects a random non-fused operator and retries the fusion
operation.
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Result. Figure 14 shows the average number of compo-
nents formed after applying our heuristics. The curve de-
noted as “score = PA” represents the score which tries to
minimize the number of components, and the curve “score
= COMM” represents the score which tries to minimize the
communication cost directly. It is interesting to see that
the approach which minimizes communication cost actually
employs the largest number of components.

Figure 15 shows the inter-component communication as a
percentage from 0 to 100. A lower level of inter-component
communication means the better performance, since that
minimizes the overhead associated with serializing and de-
serializing tuples.

Based on these results, the best approach is “score =
COMM”, since that gives the largest number of components
(i.e. we expect it has good capability of parallelization) while
obtaining the lowest inter-component communication.

7.7 Performance vs #Components
In this experiment, we consider how the throughput of

the simple job varies with the number of components. The
job is executed as either one (combined) or two (split) com-
ponents. The throughput is calculated based on the time

it takes to process 18 million tuples, calculated as the time
from initializing, until the last tuple is processed by the last
component.

Result. The result is that processing the job as one com-
ponent takes 456 seconds and processing the job as two com-
ponents takes 512 seconds. This is a difference of more than
10%, which shows that minimizing the number of compo-
nents is very important for the throughput performance.
The reason that the throughput is heavily dependent on
this, is that all tuples must be serialized and deserialized
for network transferring between components, which incurs
a large cost.

Fast Job. In the next experiment we apply the auto-
matic fusion algorithm to the fast job. The fusion algorithm
is able to merge all operators into one component, but for
this experiment we give the performance results with zero
fused, two fused, three fused and four fused operators, as
this can present the reader more insight into the importance
of fusing.
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Result. As can be seen from the results (figure 16), the
overhead associated with serializing and deserializing tuples
is very significant. Our automatic fusion algorithm can im-
prove the performance by more than a factor of three.

Notice that for this experiment, the calculation performed
by each operator was a simple aggregation which can be done
very efficiently. The more expensive the calculations done
by the operators are, the less the impact of fusion will be, as
the system overhead will no longer dominate the processing
cost. According to our experience, most operator logic is
quite simple and efficient to execute.

8. FUTURE WORK
Fusing operators into components can be optimized by

allowing the fusion of only a subset of operator instances.
This is useful, when only a subset of the operator instances
are exhibiting extensive communication. Fusing operators
which has little communication is actually not improving
performance noteworthy, but instead potentially limiting the
scalability of the solution.

The operator communication patterns can change at run-
time, which means the system might need to fuse or unfuse
operators at runtime. This can be handled by applying state
migration techniques to ensure the operator instances to fuse
are allocated to the same node. The astute reader will see
that this problem is tightly coupled with load balancing.

9. CONCLUSION
In this paper, we present Enorm, a semantical layer over

Storm with native support for window management. The
framework not only simplifies the development of compli-
cated window-based computations, but also enables efficient



sharing of computations on overlapping windows an novel
runtime adaptations. All adaptations (except combine), can
be done using Instant Migration, which exhibits both negli-
gible completion time and negligible processing latency. Fi-
nally, we show that the improved semantics can also be used
to transparently minimize the communication cost by group-
ing consistent operators into components. We propose an
optimization algorithm and our experiments show that the
optimization can improve the throughput of the tested job
by a factor of three.
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