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Abstract—Recently emerging feed-following applications gen-
erate personalized event streams from various feeds and deliver
them to a large number of users. To provide a low-latency
service, a feed-following system has to buffer the events in a
number of tables, called materialized views, and choosing views
to materialize is critical to the system performance. State-of-the-
art solutions only consider view selections for each individual
user. Due to the existence of very popular feeds and social
communities, users often share a lot of feeds that they follow
and hence performing a global optimization by considering all the
users can significantly enhance the system performance. However,
performing such a global optimization needs to choose views for
materialization from an exponential number of possible ones.
To solve the issue, we propose an effective method to generate
candidate views that are potentially beneficial. We then propose
several cost-based algorithms to solve the global view selection
problem, which adopt a cost model that captures the cost of both
user query processing and view maintenance and make use of
the containment relationships among the sets of feeds followed
by the individual users. We implement the complete approach
in a prototype system and perform experiments on a computing
cluster using both real and synthetic data. The results indicate
that our approach outperforms the state-of-the-art approaches
significantly.

I. INTRODUCTION

In online social networks like Facebook and content ag-
gregators like Google Now, users may follow the contents
generated by other users or articles from news websites with
one of the server provided orders. We call the services that
provide latest aggregated messages from multiple sources to
users as feed-following services. A feed in a feed-following
service generates time-ordered events such as news, locations
or status updates, which will be distributed to all the users
who follow this feed. According to the users’ requirements, a
feed-following system typically provides a personalized view
for each user, which aggregates the feeds that are followed by
the user.

As applications like Facebook, could have millions of daily
active users and millions of messages or links are generated per
20 minutes [1], building a large-scale feed-following system
is inevitable. However, scaling a feed-following system is
challenging because it has to aggregate messages from a large-
number of sources and provide different personalized views
to a large number of users. As shown in previous work [2],
a critical optimization is to determine when and how the
system should update the users’ personalized views. There are
two possibilities: (1) push, where upon the arrival of updated
messages from a feed, the relevant personalized views will
be updated, and (2) pull, where a view will be updated only

when a user poses an update request to the system. The
solution proposed in [2] provides an optimization algorithm
to determine whether a view of each user should be updated
using push or pull. Intuitively, if the cost of updating a view
using the push strategy can be paid off by its high access
frequency by the users, then using the push strategy can not
only reduce the runtime cost of view maintenance but also
reduce the latency for the users to access the view.

As indicated by statistics of popular online social networks,
such as [3], there exist feeds followed by millions of users and
users following thousands of feeds. In other words, there exist
many very popular feeds and many users may follow many
common feeds. Updating and optimizing individual user views
as done in previous approaches [2] misses the opportunities
to minimize the system workload by sharing arbitrary subset
of user’s following set among users and hence is suboptimal.
More specifically, one can maintain an optimized set of mate-
rialized views, each of which aggregates over some subsets of
feeds using the push strategy, so that these views can be used to
generate the personalized views for all the users. By carefully
optimizing such shared views, one can minimize the cost of
generating and maintaining personalized views for individual
users.

However, exploiting the aforementioned opportunities is
nontrivial. Given the set of feeds followed by the users, there is
a very large number of possible subsets of feeds that could be
maintained as materialized views. It has been shown that the
possible number of views for a group of users is exponential to
the maximum number of feeds followed by the users [4]. Note
that even with a given set of materialized views, choosing a
minimum subset to generate the personalized views for each
user is equivalent to the minimum set cover problem, a well-
known NP-hard problem, and hence expensive to compute,
not to mention the complexity of choosing the optimized set
of materialized views. A good news is that the size of network
community which share common connections among each
other will be around 100 as presented in [5] even for large
social network graphs. Their results agreed with Dunbar [6]’s
prediction about the size of human community.

In this paper, we formulate the view selection problem in
a feed-following system and we propose several techniques to
address the challenges. We propose a method to divide the set
of feeds followed by each user into candidate views by taking
the benefits of their materializations into account. By generat-
ing candidate views in this way, our optimization algorithm can
guarantee that materializing a candidate view would reduce the
cost of producing the personalized view for at least one user.
With this guarantee, materializing any of these candidate views



can be beneficial to the system performance. Another salient
technique that we propose is building a transitive closure graph
of the subset partial order relation among the candidate views.
We then use a bottom-up search algorithm to traverse the graph
and choose the set of views for materialization. In this bottom-
up algorithm, a candidate view that has the highest potential
to be used for generating personalized views for more users
will be considered before the others. In summary, we make
the following contributions in this work,

• We formulate the view selection problem in feed-
following system and prove that it is NP-hard.

• We propose a practical cost model to estimate the
benefit of maintaining a materialized view under feed-
following system and compare the Push and Pull
strategies with our cost model.

• We present a greedy algorithm that chooses the ma-
terialized views iteratively by using the cost models
that we develop. We then propose to use the transitive
closure graph of the subset partial order relation
among the candidate views and present our hierarchi-
cal algorithm. To limit the size of candidate views, we
adopt a heuristic to divide the feeds followed by each
user into multiple sets as the candidate views.

• We implement a prototype system and evaluate our al-
gorithms by comparing two state-of-the-art algorithms
using both real datasets and synthetic datasets. The
results show our methods significantly outperform the
state-of-the-art algorithms in various situations.

II. RELATED WORK

View selection in feed-following systems has been studied
in existing work. Feeding-Frenzy [2] provides a view selection
solution creating separate views for each user-feed pair. To
avoid the exponential number of candidate views, they consider
a candidate view for each user-feed pair. But as shown in our
evaluation results, there is a lot of potential to improve system
performance if we consider more candidate views and the shar-
ing them between users. GeoFeed [7] propose a geographical
feed-following view selection problem and present method that
considers the sharing of views that containing one feed. Our
method considers sharing views that containing more feeds
and the experiments verify doing so can significantly reduce
the system running cost.

View selection is one of the most challenging problems
in data warehouses and is known to be NP-complete [8]. It
has also been proved that view selection is inapproximable
for general partial orders. This area has also been extensively
surveyed in [9], [10], [11], [12]. This paper considers the view
selection problem in the context of a feed-following system,
which is also proved to be an NP-hard problem.

View selection in feed-following systems is also related to
partial indexing and partial materialized views. Luo [13] pro-
poses a partial materialization method to maintain frequently
accessed results to minimize the response time of popular
queries. Wu et al [14] present a partial index techniques that
only made index for frequently accessed tuples while keeping
others to be pulled from the sources. Aristides et al [15] present

an algorithm pulling social contents from hub sites to reduce
the maintenance cost and improvement social network feed
following query efficiency.

Another related research area is multi-query optimizations.
Mistry et al [16] attempt to make use of multi-query optimiza-
tion techniques to do view selections. They find that there exist
common subexpressions among multiple views, which could
be shared by multiple queries to significantly decrease the
system running cost. They generate each query’s alternative
plan and search for a multi-query plan exploiting common
subexpressions to minimize the overall maintenance cost. Sim-
ilar to this line of work, we also consider the feed-following
graph to examine the sharing of common subexpressions and
address the challenges specific to the feed-following context.

Feed-following can be considered as a special type of
publish/subscribe service like [17], [18], [19], [20], [21]. These
systems typically adopt a push approach to fan out events from
producers to consumers, for example using distributed brokers
or P2P techniques. While they consider the sharing of pro-
cessing and communication among different pub/sub queries,
we mostly focus on sharing the maintenance of materialized
views. Mondal and Deshpande[22] proposed an optimization
method considering the share of partial aggregates computation
for continuous ego-centric aggregate queries, which is also an
example of publish/subscribe system. Our hybrid push and pull
approach can also be applied in the publish/subscribe context.

III.PROBLEM FORMULATION

A. Feed-following model

A feed-following system consists of two main parties that
deal with data streams: feeds and users. The goal of a feed-
following system is to deliver aggregated events from all the
feeds followed by users correctly and promptly.

A feed f
j

is an event stream generator which periodically
emits timestamped events to all of its followers. We denote the
event stream generated by feed f

j

as FE
j

, which will emit
events periodically to the users who follow f

j

.

A user is an event consumer that receives aggregated events
from all the feeds’ streams that he follows with a selected
ranking function, Rank. Without loss of generality, we assume
Rank assigns higher scores to events with higher priorities.
The ranking function can be defined on, for example, the
event’s timestamp, popularity, importance and so on. A small
number of ranking function will be provided by the server and
user need to choose one from the available selections.

In addition to Rank, a user is also associated with an
aggregate function, Aggr, which determines how events from
different feeds should be aggregated to form the personalized
view. We consider two types of aggregations:

• Top-k. A user will get the top-k ranked events from
the feeds’ streams that he follows. This could be
defined as a feed-following query, denoted as,

�
k

(
[

8fj2Fui

FE
j

) (1)

where F
ui is the set of feeds followed by u

i

and �
k

is a function that selects the k highest ranked events



from a set of events and produces results sorted in
descending order of their ranking scores.

• Diversified top-k. A user may also require that the
top-k events should come from diversified feeds to
avoid only getting results from very few feeds that
generate very highly ranked events. To achieve that,
we can limit the number of events from each feed
to be at most t

j

. Such a user query can be formally
defined as,

�
k

(
[

8fj2Fui

�
tj (FE

j

)) (2)

In summary, a user query Q(u
i

) can be defined as a triple:
hF,Rank,Aggri, where F is a set of feeds, Rank and Aggr
are the ranking function and aggregate function respectively.

The feed-following relations can be defined as a bipartite
graph G(U ,F , E), where a vertex u

i

2 U has an edge e
k

2 E
to the vertex f

j

2 F if u
i

follows f
j

. U and F are disjoint
sets as they are separate roles in a feed-following system.
Note that the feed-following bipartite graph is only a logical
relation between users and feeds, and we need query plans
processing all the users’ feed-following queries over the feeds’
event streams. Considering the different characteristics of feeds
and users, an optimization framework is required to build an
efficient query processing plan for all the users and feeds.

B. Feed-following query processing

We now consider query processing plans for users’ feed-
following queries. We assign each feed an update frequency
�
fj that indicates how frequent it will emit a new event to

its event stream. For each user, a query frequency ✓
i

indicates
how often it will execute the aggregate query to get the results
from all the feeds he follows is assigned as well.

Events from feeds will be stored in some materialized
views within the feed-following system and delivered to the
users periodically or when the users actively pose requests.
Each materialized view v corresponds to one query, Q(v) =
hF

v

, Rank,Aggri, where F
v

is the set of feeds whose event
streams are ranked using function Rank and aggregated using
function Aggr, and v stores the query results of Q(v). Upon
the arrival of new events from a feed, the relevant materialized
view has to be updated. Therefore, maintaining materialized
views is resource consuming.

Theorem 3.1: A materialized view v can be used to answer
the query of user u

i

if F
v

✓ F
ui and both Q(u

i

) and Q(v)
share the same aggregate and ranking functions.

For a user u
i

, the subset of views that can be used to answer
his query is denoted as V

ui . An aggregation need to be done
if multiple views are used to generate the result.

C. Cost Model

As shown in Theorem 3.1, views can be used for answering
a user query if they share the same ranking and aggregate
functions. Therefore, we first divide the user queries in to
multiple partitions according to their ranking and aggregate
functions. So within each partition, all the queries have same
ranking and aggregate functions. Then we can optimize the

selection of materialized views for each partition of users
independently. Hereafter, we only consider one partition of
users and assume all user queries have the same aggregate
and ranking functions. For a user u

i

following a set of feeds
F
ui , its query Q(u

i

) will be answered by a set of materialized
views, denoted as V

ui . The query plan of Q(u
i

) is just to
aggregate the contents of all the views in V

ui .

Given the query plan of Q(u
i

), the aggregate operation
needs to collect top-k events from all the views in V

ui to an-
swer the user query. The amount of data need to be transferred
and the size of the data need to be sorted is proportional to the
number of views within a query plan. Therefore, the evaluation
cost EV (u

i

, V
ui) is estimated as:

EV (u
i

, V
ui) =

8
<

:

✓
i

P
vj2Vui

L
j

, |V
ui | > 1

0, |V
ui | = 1

(3)

where ✓
i

is the query frequency of user u
i

and L
j

is the cost
for transferring and sorting the top-k events from v

j

to query
processor, which depends on the geographical location of the
data and the type of back-end system that stores the data.
Note that in the case where V

ui contains only one view, the
aggregation cost is negligible.

Besides the query evaluation cost, the system need to main-
tain all the materialized views. We call the cost of updating
the materialized views as maintenance cost. A materialized
view v

i

needs to be updated when new events are produced
by any feed within F

vi . We then define a materialized view
v
i

’s update frequency as �
i

=
P

fj2Fvi

�
fj , where �

fj is the

update frequency of f
j

. By using H to denote the cost of
updating a materialized view for each new event, we estimate
the maintenance cost of v

i

as follows,

M(v
i

) =
X

fj2Fvi

�
fjH (4)

In the above discussions, the cost we define can be con-
sidered as the consumption of a system resource, which could
be CPU, disk I/O or network I/O. In practice, we can quantify
the above cost model by considering the system’s bottleneck
resource and use it as the optimization goal. As discussed in
previous work [2], the bottleneck resource depends on how the
feed following system is implemented. In this paper, to fulfill
the low-latency requirements of feed following applications,
we assume the materialized views are stored in a distributed in-
memory database and the system is run on a cluster of servers
with sufficient main memory and a high-bandwidth network. In
such a system, CPU is the system’s major bottleneck resource.
Optimizing the CPU usage of feed-following system will
naturally improve the system performance that the potential
throughput is higher. Therefore, we use CPU consumption as
the optimization goal from now on.

D. Problem Statement and Hardness

A view selection plan P is 2-tuple hV,QPi, where V is the
set of views that are selected to be materialized in the system
and QP are the optimized query plans for all the user queries.
The cost of a view selection plan is the sum of maintenance
cost of all the materialized views and evaluation cost of all the



users’ queries. The cost of P, denoted as Cost(P), is defined
as follows,

Cost(P) =
X

vi2V
M(v

i

) +
X

uj2U
EV (u

j

, V o

uj
) (5)

where V o

uj
is the optimal query plan for user u

j

using V .

Now we can formally define the View Selection problem
as follows. Given a feed-following bipartite graph G(U ,F , E),
the View Selection problem is to find a view selection plan
P = hV,QPi, such that Cost(P) is minimized and all the
user queries can be evaluated using query plans in QP over
the materialized views V .

The following theorem states that the View Selection prob-
lem is an NP-hard problem, which means we cannot develop
an optimal algorithm that has a polynomial time complexity
unless P = NP .

Theorem 3.2: View Selection is an NP-Hard problem.

Proof: We prove this by restriction. We first restrict the
View Selection problem by ignoring the maintenance cost of
the materialized views and by considering only a fixed set of
materialized views. Then finding the optimal query plan for
each user query is equivalent to finding the minimum subset
of materialized views that can cover all the feeds followed by
the user. In other words, it is equivalent to a minimum set
cover problem, which is known to be NP-hard.

IV.VIEW SELECTION ALGORITHMS

A. System Overview

A typical architecture of a view selection enabled system
is shown in Figure 1. The view selection planning component
takes the feed-following bipartite graph, the query frequency
of each user and the update frequency of each feed as inputs.
The system will store each feed’s event stream as a view for
storage. This kind of view will be maintained whenever a
new feed is added to the system and we call it the feed’s
native view. When executing a user query in the system, the
query processor will calculate query results using query plan
generated by the view selection component and route the query
to the corresponding storage nodes. It needs to select a set of
views that are maintained in the system with minimum overall
cost.

B. Basic View Selection

For a given user u
i

and his following set F
ui , there are

basically two query evaluation strategies for each feed followed
by the user, called pull and push respectively.

Take the bipartite graph in Figure 2 as an example. There
are 4 users each following a subset of the 5 feeds. The statistic
of update and query frequencies are listed in the figure. We
only have the native views maintaining each feed’s events
before we select more views to materialize. We need to find
how to answer each user’s query and what extra views we need
to maintain.

Pull is a query-on-demand strategy. The system will gen-
erate the personalized view for a user only when an update of

Storage

User List Feed List

Feed-Following Bipartite Graph

Query
Processor

View 
Maintainer

View Set

U
ser C

lients

Feed C
lients

View Selection Planning Component

Fig. 1. The generic system architecture

U1

U2

U3

U4

F1

F5

F3

F2

F4

Statistics
F1           1  update/int
F2           2  updates/int
F3           1  update/int
F4           2  updates/int
F5           1  update/int
U1           2  queries/int
U2           2  queries/int
U3           6  queries/int
U4           5  queries/int

Fig. 2. Feed-following bipartite graph and statistics

the view has to be generated and send to the user. The cost
of generating the view on demand depends on the frequency
of the user query and the number of sources being used to
calculate the aggregated results.

Push is a query-on-update strategy. A user’s personalized
view is materialized and actively being updated upon each new
event that arrives. The cost of a push strategy is only related
to the frequency of event updates and independent on the user
query frequency.

We can naturally introduce two basic view selection so-
lutions for a given feed-following bipartite graph, which are
the PullALL and PushAll algorithms. Considering our example
relation in Figure 2, a PullALL algorithm will only use the
native views and generate the personalized view for all users
on demand. We assume all the views are stored in same type of
node, so we have the same L

j

for each nodes j and use a L to
denote it. The total cost will be 49L+7H for PullAll algorithm
under our cost model. PushAll needs to materialize each user’s
personalized view in addition to the native views. The total cost
for PushAll algorithm will be 22H . Both of the two algorithms
do not consider the users’ query frequencies and the feeds’
update frequencies. They cannot provide a robust performance
for different kinds of feed-following workload. We need to find
algorithms to generate hybrid plans with both Push and Pull
strategies.

C. Candidate View Generation

To obtain a hybrid plan, the first step is to generate a
set of candidate views to be considered for materialization.
Candidate view should be used by at least one user to ensure
it has the potential capability to reduce overall evaluation and



maintenance cost. With such a requirements we can restrict
the candidate views as those maintain aggregated events from
subset of each user’s following feed set. The complete set of
candidate views is the power set of the following feeds for all
the users, which is exponential to the maximum following size
among all the users. Searching with such a large number of
candidate views is prohibitively expensive. On the other hand,
considering more candidate views could explore more chances
of sharing and has the potential to generate a better plan.

Intuitively, we can use all the users’ personalized view as
the set of candidate views to limit the search space. Then
the number of candidate views is limited to the number of
users. For the example graph in Figure 2, we can generate 3
materialized views to serve all the users in Figure 3a.

However, only using the users’ personalized views may
not provide sufficient system performance. This is because
the feeds that followed by a user may have different update
frequencies, materializing them altogether is often not an
optimal solution. To solve this problem, for a given set of
feeds followed by a user, we estimate the profit of selecting
each of them into a materialized view. Then we divide the feeds
into two groups: PushPrefer and PullPrefer, where PushPrefer
contains the all the feeds that are beneficial to be included in a
materialized view and PullPrefer contains the rest. The profit
value is estimated as follows.

According to Eqn (4), the materialization cost incurred by a
feed f

j

is AM(f
j

) = �
fjH , where �

fi is the update frequency
of f

j

. On the other hand, if f
j

is not included in a materialized
view that can be used by u

i

, then the query evaluation cost
for u

i

incurred by pulling data from the native view of f
j

is
AEV (u

i

, f
j

) = ✓
i

L
j

, where ✓
i

is the query frequency of u
i

and L
j

is the cost of pulling data from the native view of f
j

.
Then we estimate the profit of including f

j

into a materialized
view to be used for u

i

as Profit(u
i

, f
j

) = AEV (ui,fj)
AM(ui,fj)

.

Our candidate view generation algorithm is presented in
Algorithm 1. Lines 2–11 generate two candidate views from
each user’s following set: PushPrefer and PullPrefer. For
each user u

i

and each f
j

that he follows, if Profit(u
i

, f
j

)
is greater than 1, then f

j

is potentially beneficial to be put
in a materialized view and hence we put it in PushPrefer.
Otherwise, f

j

is put in PullPrefer. It is clear that materializ-
ing PushPrefer may benefit u

i

. Furthermore, materializing
PullPrefer would increase the total cost if we only consider
u
i

. However, if the view PullPrefer can be shared by
multiple users, then the total cost of the users sharing it
may be reduced. In other words, PullPrefer may still be
beneficial if we consider global optimization and we should
put it in the candidate views. Generating more candidate views
may potentially improve the view selection result, but it will
increase the computation complexity of the view selection
algorithm.

In lines 12–21, we generate the candidate views and store
their properties, including their maximal query frequencies,
update frequencies and sets of potential users. The maximal
query frequency is the sum of the query frequencies of all the
users who may use this view and the update frequency is the
sum of all the view’s feeds’ update frequencies.

Algorithm 1: Candidate view generation
Data: Feed-following bipartite graph G(U ,F , E)
Result: Candidate view set CV

1 Initial HashMap Users(Feed,UserSet); //mapping a feed
to the set of users following it

2 foreach u
i

2 U do
3 Initialize PushPrefer and PullPrefer;
4 foreach f

j

2 F
ui do

5 Users[f
j

].add(u
i

);
6 if Profit(u

i

, f
j

) � 1 then
7 Insert f

j

to PushPrefer
8 else
9 Insert f

j

to PullPrefer
10 Insert PushPrefer to V G; Insert PullPrefer to V G;
11 foreach F

k

2 V G do
12 Create view v using F

k

;
13 v.queryFreq  ✓

i

;//✓
i

is the query frequency
of u

i

14 v.updateFreq  �
k

;//�
k

is the sum of the
update frequencies for all the feeds in F

k

15 v.users T
fj2Fv

Users.get(f
j

); //all the users

who can use this view
16 if v

k

2 CV & v
k

== v then
17 //if we already have a candidate view with

the same set of feeds
18 v

k

.queryFreq+ = v.queryFreq;
19 else
20 Add v to CV;
21 return CV ;

D. Cost-based Greedy View Selection

With the cost model for both push and pull strategies,
we can develop a cost-based view selection algorithm. Note
that the views of different users may share common feeds.
Materializing a view for one user may also affect the query
evaluation cost of other users. This means that view selections
for different users are not independent.

As the view selection is an NP-hard problem, we need to
find heuristic techniques to simplify the algorithm. Given the
generated candidate views, we need to search for a subset of
them to materialize and assigning optimal query processing
plans to the users using the selected materialized views. A
straightforward idea is to prioritize materializing views that
brings higher benefits to the system performance. This Greedy
algorithm is presented in Algorithm 2.

The benefit of a candidate view is quantified as the amount
of cost reduction that can be obtained by materializing it. More
precisely, the benefit of a view v

j

is equal to the reduced
amount of evaluation cost for all the queries that can use v

j

subtracted by the maintenance cost of v
j

.

Given a set of materialized views V , the additional benefit
of materializing v

j

denoted as B(v
j

,V) can be defined as:

B(v
j

,V) =
X

ui2vj .users

(EV (u
i

, V
ui)

�EV (u
i

, V 0
ui
))�M(v

j

) (6)
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U2

{f1,f3,f5}
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(a) Greedy Algorithm

V2 V1 V3
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U2
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U1
{f1,f3,f5}

{f3,f5} {f1,f3,f5} {f1,f2,f3,f4,f5}
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(b) Hierarchy-1 Algorithm
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(c) Hierarchy-2 Algorithm

Fig. 3. Example View Selection Plans on Example Graph

Algorithm 2: Greedy Algorithm
Data: Feed-Following bipartite Graph G(U ,F , E)
Result: View selection plan P(V, UserP lan)

1 V  VF ; //native views as materialized views
2 Initialize HashMap UserPlan;//User id to
hQueryPlan,Costi

3 Generate CV ;
4 foreach v 2 CV do
5 foreach u

i

2 v.users do
6 //v.users is defined in line 16 of Algorithm 1
7 Calculate hQueryPlan,Costi and stored in

UserPlan
8 v.b  B(v

j

,V); //Assign materialization benefit
9 if v.b  0 then

10 Remove v from CV;
11 Sort CV by benefit in descending order;
12 while CV 6= ; do
13 v  Pop(CV); //Candidate view with the highest

benefit
14 Add v to V;
15 foreach u

i

2 v.users do
16 Update UserPlan[u

i

] using V
17 foreach v

j

2 CV do
18 if F

v

✓ F
vj then

19 foreach u
i

2 v
j

.users do
20 Update UserPlan[u

i

]
21 v

j

.b B(v
j

,V);//update v
j

’s benefit
22 if v.b  0 then
23 Remove v from CV;
24 Sort CV by benefit in descending order;
25 return P(V, UserP lan);

where V
ui and V 0

ui
are the sets of materialized views chosen

from V and VS
v
j

, respectively, to evaluate the query of u
i

.
EV (u

i

, V
ui) and M(v

j

) are defined in Eq. (3) and Eq. (4).

One may notice from the above formula that the evaluation
cost of u

i

depends on the materialized views chosen to evaluate
his query and, with a given set of materialized views V ,
there may exist multiple possible query plans for each user
query. Hence, to estimate the evaluation cost of a query
with a given set of materialized views V , we have to first
generate an optimized query plan, i.e choosing an optimal
set of materialized views from V to evaluate the query of
each user u

i

. This optimization problem is equivalent to find
the minimum set cover for F

ui , the following set of u
i

,
using the views in V . The minimum set cover problem is a
well-known NP-hard problem. We make use of the greedy

minimum set cover algorithm, the best-possible polynomial
time approximation algorithm [23].

Algorithm 2 first adds all the feeds’ native views to the set
of materialized views V (line 1) and then generates candidate
views CV using algorithm 1 (line 3). We can then generate the
initial query plan for each user, calculate the materialization
benefits for all the candidate views and sort them by their
benefits in decreasing order (line 4–11). Note that we can
safely remove the views whose benefit values are negative
(lines 9–10). This is because the benefit of a candidate view
would only decrease when more views are materialized and
the subsequent steps of the algorithm would not choose to
materialize these views anyway.

In lines 13–14, we take the candidate view v that has the
highest benefit from CV and put it in the set of materialized
view V . Then for each user u

i

whose query evaluation cost
can be reduced by putting v in its query plan, we use the
new and cheaper query plan (lines 15-16). With v being
materialized, the benefits of other candidate views that is a
superset of v could be decreased because the potential amount
of cost reduction incurred by materializing them is decreased.
Therefore, we need to update their benefit values and re-sort
the set of candidate views (lines 17–24). Again, we remove
candidate views whose benefit values are less than 0, which
will not be materialized (lines 22–23).

Algorithm Complexity. The complexity of running the
greedy minimum set cover algorithm on F

vj using V is
O(n·|V|), where n is the size of F

vj . Since the native views of
all the feeds are maintained in V , there should exist a cover for
any F

vj . The minimum set cover algorithm will be executed at
most n times if a candidate views v

j

need to be materialized.
We can then derive the complexity of the greedy algorithm as
O(m·n2

max

·(f+m)), where f is the number of feeds in F , m
is the number of candidate views in CV and n

max

stands for
the candidate view that contains the greatest number of feeds.

Example. We use the 3 candidate views in Figure 3a as an
example, which are supposed to be generated without dividing
each user’s following list. We use the same back-end system
as discussed in the former example to define the same L for
each node. We can calculate the benefit using the statistics in
Figure 2 for these 3 views as 12L�3H, 12L�2H, 25L�7H
respectively. The H/L value may depend on the system being
used to store the data and the selected user queries. It can
be estimated by executing push and pull only queries on the
given system. We have got a value of 2.83 in our system
for top-k newest queries by linear regression using the result
from 10 different number of random queries’ CPU usages
with only one push or pull operation. We can then sort the



views by their benefits in descending order as V2, V3, V1. We
materialize top-beneficial view V2 first, then update the benefit
of the remaining views V3 and V1 as 20L�7H and 8L�3H .
Now the remaining candidate views will be sorted again with
the new benefit values and V1 is removed from the candidate
view due to its negative benefit value. This process goes on
and, this time, choses to materialize V3, the new top-beneficial
candidate view. The total cost of this chosen plan is 16H+8L
with the materialization of the native views, V2 and V3. In the
query plans, U1 and U2 pull results from V 2 and f1’s native
view, and U3 and U4 get pushed results from V 2 and V 3
respectively.

E. Hierarchical View Selection

The candidate views may have subset partial order relation
between each other, which can be used as heuristic infor-
mation in the view selection process. We can calculate the
transitive closure graph of the candidate views’ subset relation.
This graph contains all the subset partial order relations
among all the candidate views. The transitive closure graph
G(CV,CV +) is a directed acyclic graph, because we have
combined views maintaining the same set of feeds. In the
graph, each vertex represents a candidate view and each edge is
the subset partial order relation between each pair of candidate
views. For a given set of candidate views CV , the transitive
closure graph is defined as G(CV,CV +) = {(v

k

, v
j

)|8F
vj ✓

F
vk , vj , vk 2 CV }.

Note that materializing v
j

may decrease the potential eval-
uation cost of v

k

, but materializing v
k

will not influence v
j

’s
cost. Therefore, we may get a better plan if we consider v

j

’s
materialization before v

k

. Another observation is that if there is
no path between two views in the transitive closure graph, the
materialization decisions for these two views are independent
from each other because there is no sharing possibilities here.
With these two observations, we may be able to generate better
optimization results if we enumerate the candidate views in an
order that considers their subset relationship instead of only
using the descending order of the materialization benefit as in
the greedy algorithm.

We propose a traversal algorithm based on the idea of
Depth-First Search (DFS), which is called Bottom-up Depth-
First Search (BDFS) presented in Algorithm 3. A transitive
reduction is done on the transitive closure graph to reduce the
number of edges and it will not affect the final visiting order.
We can get a unique visiting order of the candidate views,
starting from a small view to its superset using the BDFS
algorithm. The hierarchy algorithm runs similarly to the greedy
algorithm except that it visits the candidate views in the order
that is produced by the BDFS algorithm.

For the example inputs shown in Figure 2, we can generate
the same 3 candidate views as described in the previous section
under same system. However, unlike the greedy algorithm,
the views are visited in the order of V2, V1, V3. The different
visiting order results in a different decision as shown in
Figure 3b. Here we do not materialize V3 because the pull
cost of U4 is reduced after we materialize V1. The total cost
using the hierarchy algorithm is 12H+15L, which is less than
the greedy algorithm.

Furthermore, if we divide U4’s following set into two parts:

Algorithm 3: Bottom-up Depth-first Search
Data: Transitive closure graph of candidate views

G(CV,CV +)
Result: Ordered candidate view list CV

L

1 G(CV,CV R)  TransitiveReduction(G(CV,CV +));
2 Stack S, List CV

L

, HashMap
Processed(V iew,Boolean) initialize;

3 Add all views CV to Processed, initial to false;
4 Sort Processed by F

vj size in descending order;
5 foreach v

j

2 Processed.KeySet do
6 Push v

j

to S;
7 while S not empty do
8 v

k

 S.peek();
9 if Processed.get(v

k

) = True then
10 S.pop();
11 if v

k

/2 CV
L

then CV
L

 v
k

; ;
12 else
13 Processed.put(v

k

, T rue);
14 foreach (v

k

, v
r

) 2 G(CV,CV R) do
15 S.push(v

r

);
16 return CV

L

;

f1, f3, f5 which has a higher amortized benefit to materialize
and f2, f4 which has lower benefit. We may have a different
plan which materializes all the candidate views with the total
cost 16H and the user query plan showing in Figure 3c using
the Hierarchy algorithm. This cost is the minimum cost for all
the plans presented in this section.

In addition, in the greedy algorithm, when we attempt
to materialize a candidate view, the transitive closure graph
can be used to find the views that could benefit from the
materialization of the current view. In this way we can visit
a smaller amount of views in each iteration, which reduces
the complexity. However, when there is no subset relations
among the candidate views, the hierarchy algorithm will select
the same views as the greedy algorithm. The complexity of
transitive closure mainly depends on the number of arcs in
graph [24] and the worst case complexity is O(n3) (n is
the number of vertex in graph, i.e. the number of candidate
views), which is much lower than the user query planning
process in the view selection problem. Compared to the greedy
set cover complexity in hierarchy algorithm, generating the
new searching order will not increase the complexity of the
hierarchy algorithm a lot.

V. EVALUATION

A. Experiment Setup

Datasets. We conduct our experiments on both synthetic
and real dataset. Synthetic dataset is generated using the
Apache Math library. We create multiple synthetic datasets
using different parameters for Zipfian distributions to generate
various scenarios to examine our algorithms’ sensitivity to
different input parameters. We assume the generated events
sizes are the same among all the feeds.

We also use a real world dataset from Google+ containing
a sample snapshot of a real feed-following system [25], where
each user follows some other users’ feeds. This dataset only



contains the user relation graph and there exists a lot of users
whose following set is not fully available. We read all the edges
in the user relation graph and transform them into edges in a
bipartite graph. Then we take the starting vertex of each edge
as a feed and the rests as users to obtain a feed-following
graph. In total, the dataset contains 99679 users and 72271
feeds. The average number of feeds per user is 137.1 and
through analysis, we find that it closely follows a Zipfian
distribution with a parameter of 0.98. The average number
of users per feed is 189.1 and we find it closely follows a
Zipfian distribution with a parameter of 1.43. We assign update
frequency and query frequency using the parameters in Table I,
which have the same distribution in [2]. In addition, we use
top-k events aggregation with a ranking function that sorts
events chronologically.

Amount Zipfian
Parameter

Feeds per user 6.5 0.62
Update frequency
of each feed 0.1 news/interal 0.57

Query frequency
of each user 0.5 queries/interval 0.62

TABLE I. PARAMETERS FOR BASELINE SYNTHETIC DATASET

Implementation and Cluster Hardware. We implement
our prototype system using JAVA 1.7 and Redis 3.0.1 [26],
an in-memory key-value store system, as the backend storage
system. The experiments are conducted on a cluster of 8
servers with 2⇥2.66Ghz Intel X5550 CPUs and 48 GB RAM.
6 nodes running Redis are used as storage server. We also
have one node as the view maintainer and another one as the
query processor to simulate the feeds updating and user query
separately.

Algorithms. We compare the following algorithms:

1) PushAll. Materialize views for all the users’ following
sets and all the user queries are evaluated using the
push strategy.

2) PullAll. Only maintain the feeds’ native views. Dif-
ferent users sharing a common following feed would
share the native view of the common feed.

3) FF-Consumer. The algorithm proposed in Feeding
Frenzy [2] with the setting of per consumer strategy.

4) FF-PerPair. This is similar to FF-Consumer, except
that it makes use of the per-pair strategy, where the
pull or push decision will be made for each pair of
user and feed.

5) Greedy. The greedy algorithm presented in Algo-
rithm 2. Since each data node is running the same
database system, the basic pull cost L

i

is the same
on different nodes. Here we use users’ full following
sets to generate the candidate views.

6) Hierarchy. Our Hierarchy algorithm. The model pa-
rameters are the same as those used in the Greedy
algorithm. We have Hierarchy-1, which generates
candidate views using each user’s full following
set, and Hierarchy-2, which use our candidate view
generation algorithm to generate the candidate views.

To obtain stabilized results, each algorithm under each param-
eter setting is run for 20 minutes. Since we consider a static
feed-following graph, the optimization of each algorithm is
done offline.
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Fig. 5. Real Dataset Scalability Experiments

Metric. As we use an in-memory database with sufficient
RAM on each server and a high speed network, CPU is the
major bottleneck. The performance metric we use is the total
CPU usage of all the server nodes in the cluster, which is
collected by using the sar command in Linux. Note that a
lower CPU usage indicates a higher system throughput.

B. Running Time

The results of the synthetic dataset are presented in Table II.
PullAll and PushAll have the lowest running time due to
its simplicity. FF-Consumer and FF-PerPair have similar
searching times since they only consider each user’s own
following set and make decisions locally for each user. Greedy,
Hierarchy-1 and Hierarchy-2 consume more searching time
because they need to consider the dependency of different
views to generate query plans for users. Hierarchy-1 is more
expensive than Greedy as it need to find the subset partial order
relations.

C. Load Levels

We then simulate the different load levels by scaling
the time unit under the same query and update frequency
setting. We use an interval timer to simulate the feed-following
system’s workload. For a given dataset, changing the interval
size is equivalent to varying all feeds’ update frequency, UPS
(update per second), and all users’ query frequency, QPS
(query per second) simultaneously. We use the same basic
synthetic dataset in the previous experiment. The experiment
results are presented in Figure 4a. We find that our cost model
successfully estimates the actual workload of the system. Our
Greedy and Hierarchy-1 achieve similar performance as FF-
Consumer and our Hierarchy-2 achieves a good performance
with an average CPU usage reduction of 16% compared to
FF-PerPair. Hierarchy-2 algorithm can achieve much more
performance improvements when the workload is high. The
improvement of Hierarchy-2 persists even when the system
load is low since the candidate view generation algorithm
provides higher possibility to share views among users.



Algorithm PullAll PushAll FF-Consumer FF-PerPair Greedy Hierarchy-1 Hierarchy-2
Search Time (ms) 76 62 189 189 858 922 1080

TABLE II. ALGORITHM RUNNING TIME FOR SYNTHETIC DATASET

D. Data Sizes

We also examine our algorithms’ performance under dif-
ferent dataset sizes by varying the size of the synthetic data
while keeping the other parameters unchanged. We generate a
basic dataset with 10, 000 feeds and 30, 000 users and then a
series of datasets which is 20% larger than its antecedent. We
denote the basic dataset size as 10x, and the subsequent ones
as 12x, 14x, 16x, 18x and 20x respectively. We use the load
level as 5k UPS (update per second) and 75k QPS (query per
second) in these experiments.

From Figure 4b, we can find that all the samples have a
better performance with PullAll than PushAll. Take the 16x
results as an example, Hierarchy-1 has a reduction of 16%
CPU usage compared to Greedy and 13% to FF-Consumer.
FF-PerPair has a similar performance as Hierarchy-1 due to
the fact that it makes separate decisions on each feed for each
user. This shows the importance to split each user’s following
set while we are generating candidate views. This can be
clearly verified by the results of Hierarchy-2. Hierarchy-2
has the best performance under all the data sizes. Over all
the experiments, it achieves on average an 18% reduction on
the average CPU usage compared to FF-PerPair and 31% to
Hierarchy-1. This indicates that our candidate view generating
algorithm provides more opportunity to minimize the system
cost and hence can achieve more robust performance with
different data sizes.

E. Impact of Skewness

In this subsection, we examine the impact of the skewness
of the size of each user’s following set and the number of
each feed’s follower. We run two sets of experiments varying
the parameter of the zipfian distributions. We use the same
average number in Table I but change the zipfian parameters
to see the sensitivity of the algorithms. We use the basic data
size described above, 4k UPS and 60k QPS as adopted.

Figure 6a presents the results on the skewness of the size
of each user’s following set. All the advanced optimization
algorithms can achieve better performance comparing to the
two basic ones, while Hierarchy-2 is the winner under all
the situations. This indicates that Hierarchy-2 is robust to the
skewness of the users’ following set.

The results on the skewness of the number of each
feed’s follower are presented in Figure 6b. Hierarchy-1 can
achieve a better performance with a low skewness because
lower skewness results in more levels in the subset partial
order graph. The Hierarchy algorithm takes advantage of the
complex graph structure and produces a better plan. Greedy
algorithm is getting worse when the skewness is low because
the searching order does not consider future sharing possibility
of a materialized view. FF-Consumer and FF-PerPair perform
similarly since they only consider individual user’s following
relationship, and hence the skewness of the feed popularity
will not affect the decisions. Hierarchy-2 performs overall the
best while being robust to skewness.

F. Impact of query/update ratio

In this experiment, we examine the cases with different
query/update ratios, i.e. the ratio of user querying frequency
to feeds’ updating frequency. This ratio affects the average
performance of pull and push strategy. We use 10x sample size
and 4k UPS and 60k QPS load level in these experiments. To
vary the query/update frequency ratio, we keep the query fre-
quency unchanged and varying the average update frequency.
The results are presented in Figure 6c. We can see that when
the query/update frequency ratio increases, the push strategy
becomes a better choice and all the other algorithms except
PullAll get a better performance. Again, Hierarchy-2 has the
best overall performance and its edge over the other algorithms
increases with the increase of the ratio. This is because it can
materialize more views for sharing with a larger ratio. On the
other hand, when the update frequency is much greater than
the query frequency, PullAll has a relatively good performance
and the improvements achieved by the other algorithms are
less significant. This is understandable because the lower of
the query/update ratio, the less benefit can be achieved by
materializing views.

G. Impact of Following Size

We also examine the algorithms under different user
following size. When users follow more feeds, it is more
expensive to use a user’s complete following set as candidate
views. We use the basic 10x dataset under 4k UPS and 60k
QPS load level but varies the average size of user following
set. From the results in Figure 6d, we can see that Hierarchy-2
can achieve a better improvement over Hierarchy-1 with larger
following sets. FF-PerPair’s performance gap between FF-
Consumer is also larger when following set becomes larger.
This is as expected because the larger the following set of
each user, the more improvement can be achieved by sharing
the views among users.

H. Real Dataset Experiments

Besides the synthetic dataset, we also run the experiment
of 4 algorithms on the real dataset. We vary the interval size
in a similar way as stated above to change the system load
level. Due to the bad performance of PushAll, PullAll and
Hierarchy-1, we disregard them in this subsection for brevity.
As shown in Figure 5, the results are quite similar to those of
the synthetic datasets. Since the average number of followers
of each feed is much larger than the synthetic dataset (about 8
times larger), the possibility of sharing materialized views is
larger. We can see our Hierarchy-2 algorithm uses 32.5% less
CPU compared to FF-PerPair on average. From the results of
the real dataset experiments, we can verify that Hierarchy-2
has the overall best performance when there are more users
and feeds in the system.

We also collect the running time of the algorithms, which is
shown in Table III. While FF-PerPair and FF-Consumer run
faster than Hierarchy-2, Hierarchy-2 can still complete in a
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Fig. 6. Varying Parameters of the Synthetic Dataset Experiments

Algorithm FF-Consumer FF-PerPair Greedy Hierarchy-2
Search Time (s) 8 374 87,399 8,500

TABLE III. ALGORITHM RUNNING TIME FOR GOOGLE+ DATASET

reasonable time and produce a much better plan. Furthermore,
we can see that Greedy is ten times slower Hierarchy-2, but
its plan is worse than Hierarchy-2.

VI.CONCLUSION

In this paper, we present the view selection problem in
feed-following systems and formally formulate the optimiza-
tion problem. We present a cost model to measure the potential
system load with different view selection plans. We observe
that view selections for different users are not independent
and we need to consider the possible sharing among users
for a better view selection plan. We propose a candidate view
generation algorithm that can generate potentially beneficial
candidate views and present a greedy and a hierarchical algo-
rithms. We conduct comprehensive experimental evaluation on
our algorithms by comparing them to state-of-the-art solutions.
The results show that our hierarchical algorithm with our
candidate view generation algorithm can achieve the best
performance under all of the tested situations, especially with
the real datasets.
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